Performance Evaluation and Networks

Discrete time Markov Chains (MC) Tools for analysis

How to decide irreducibility? aperiodicity?

Transition graph structure:

- Computing strongly connected comp and acyclic quotient graph: computable in general (depends on the chain description if nb states ∞), linear in time and space (if finite nb states) → algos based on DFS (Tarjan 1972, Kosaraju 1978)
- Computing the period: computable in general (depends on the chain description if nb states ∞), linear in time and space (if finite nb states) → algo based on graph searching (Denardo 1977)

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_{\Lambda} \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_{\lambda} = 0, \forall \lambda \notin \Lambda, x_{\lambda} > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_{\Lambda}$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$,

with $\sum_{\Delta \in \{-1,0,+1\}^d} p(\Lambda, \Delta) = 1.$

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_{\Lambda} \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_{\lambda} \ge 0, \forall \lambda \notin \Lambda, x_{\lambda} \ge 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_{\Lambda}$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps)

For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_{\Lambda} \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_{\lambda} = 0, \forall \lambda \notin \Lambda, x_{\lambda} > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_{\Lambda}$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

Irreducibility? Periodicity? Modeling with discrete time HMC

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, \ldots, d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_{\Lambda} \stackrel{\text{def}}{=} \{x = (x_1, \dots, x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_{\lambda} = 0, \forall \lambda \notin \Lambda, x_{\lambda} > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d$, $\forall x \in \mathbb{N}_{\Lambda}$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Lambda \in \{-1,0,+1\}^d} p(\Lambda, \Delta) = 1$.

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_\Lambda \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_\lambda = 0, \forall \lambda \notin \Lambda, x_\lambda > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_\Lambda$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_\Lambda \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_\lambda = 0, \forall \lambda \notin \Lambda, x_\lambda > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_\Lambda$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_\Lambda \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_\lambda = 0, \forall \lambda \notin \Lambda, x_\lambda > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_\Lambda$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps) For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_\Lambda \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_\lambda = 0, \forall \lambda \notin \Lambda, x_\lambda > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_\Lambda$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps)

For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_{\Lambda} \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_{\lambda} = 0, \forall \lambda \notin \Lambda, x_{\lambda} > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_{\Lambda}, \text{ proba to jump from } x \text{ to } x + \Delta \text{ is } p(\Lambda, \Delta),$ with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1.$

HMC face homogeneous with unit jumps Ex here: if $\Lambda = \{1,2\}$ et $\Delta = (+1,+1)$ $p(\Lambda, \Delta) = 1/2$

How to decide recurrence?

Definition (Face-homogeneous HMC over \mathbb{N}^d with unit jumps)

For all $\Lambda \subseteq \{1, ..., d\}$, HMC (X_n) space homogeneous over the face $\mathbb{N}_{\Lambda} \stackrel{def}{=} \{x = (x_1, ..., x_d) \in \mathbb{N}^d | \forall \lambda \in \Lambda, x_{\lambda} = 0, \forall \lambda \notin \Lambda, x_{\lambda} > 0\}$ such that $\forall \Delta \in \{-1, 0, +1\}^d, \forall x \in \mathbb{N}_{\Lambda}$, proba to jump from x to $x + \Delta$ is $p(\Lambda, \Delta)$, with $\sum_{\Delta \in \{-1, 0, +1\}^d} p(\Lambda, \Delta) = 1$.

Theorem (Gamarnik 2002)

Deciding for any d if HMC face-homogeneous over \mathbb{N}^d with unit jumps is positive recurrent, is undecidable.

Theorem (Malyshev 1972, Menshikov 1974, Ignatyuk 1993)

Deciding for fixed $d \in \{1, 2, 3, 4\}$ if HMC face-homogeneous over \mathbb{N}^d with unit jumps is positive recurrent, is decidable (open for fixed

How to decide recurrence?

Useful first step: check irreducibility. **Checking recurrence:**

- ▶ by returning to the definition (e.g. explicit value of $\mathbb{P}_i(T_i < \infty)$)
- ► by the potential matrix criterium (nature of $\sum_{n>0} p_{ii}(n)$)

Checking positive recurrence:

- ▶ if finite nb states, obvious: yes iff irreducible
- ► by returning to the definition (e.g. explicit computation of $\mathbb{E}_i(T_i)$)
- ► by searching a invariant distribution (search an inv measure & check at the end that $\sum_i \pi_i < \infty$),
- ▶ by the use of super/sub-martingales.

Martingales: definitions

Cond expectation of *Y* **real r.v. with respect to r.v.** $X_n, ..., X_0$: $\mathbb{E}(Y|X_n, ..., X_0) \stackrel{\text{def}}{=} \sum_{i_0, ..., i_n \in E} \mathbb{E}(Y|X_n = i_n, ..., X_0 = i_0) \mathbb{1}_{X_n = i_n, ..., X_0 = i_0} \land \mathbf{r.v.}$

Definition (Martingale with respect to process $(X_n)_{n \in \mathbb{N}}$)

Process $(M_n)_{n \in \mathbb{N}}$ with real values martingale with respect to Process $(X_n)_{n \in \mathbb{N}}$ with values in E if: $\forall n \in \mathbb{N}, \mathbb{E}|M_n| < \infty$ and $\mathbb{E}(M_{n+1}|X_n, ..., X_0) = M_n$. In this case, $\forall n \in \mathbb{N}, \mathbb{E}(M_n) = \mathbb{E}(M_0)$.

In practice: usually $M_n \stackrel{\text{def}}{=} f(X_n, \dots, X_0)$, or even $f(X_n)$, then check if $\forall i_0, \dots, i_n \in E$, $\mathbb{E}(M_{n+1}|X_n = i_n, \dots, X_0 = i_0) = f(i_n, \dots, i_0)$.

Example: (X_n) symmetric walk over \mathbb{Z} , $M_n = f(X_n)$ with f(i) = i

Variants: sub-/super-martingale if $\forall n \in \mathbb{N}$, $\mathbb{E}(M_{n+1}|X_n, ..., X_0) \ge M_n$ (resp \le) and $\mathbb{E}|M_n| < \infty$

Martingales: stopping time theorem

Theorem (Doob's stopping theorem/ optional stopping theorem)

Let (M_n) martingale (resp. sub-/super-) for (X_n) and T stopping time for (X_n) . If at least one of the next conditions is true:

- $T \le N \ a.s. \ where \ N \in \mathbb{N}$
- ② $T < \infty$ and $\forall n \in \mathbb{N}$, $|M_n| \le C$ a.s. where $C \in \mathbb{R}_+$

③ $\mathbb{E}(T) < \infty$ and $\forall n \in \mathbb{N}$, $|M_{n+1} - M_n| \le C$ a.s. where $C \in \mathbb{R}_+$

Then $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ (resp. $\geq \leq$).

Applications: (*X_n*) symmetric walk over \mathbb{Z} , $0 \le i \le N$, let $T = \tau_{\{0,N\}}$ absorption time by 0 or *N*

- ▶ Proba of absorption by *N*:
- Mean absorption time:

Martingales: stopping time theorem

Theorem (Doob's stopping theorem/ optional stopping theorem)

Let (M_n) martingale (resp. sub-/super-) for (X_n) and T stopping time for (X_n) . If at least one of the next conditions is true:

- $T \leq N \ a.s. \ where \ N \in \mathbb{N}$
- ② $T < \infty$ and $\forall n \in \mathbb{N}$, $|M_n| \le C$ a.s. where $C \in \mathbb{R}_+$

③ $\mathbb{E}(T) < \infty$ and $\forall n \in \mathbb{N}$, $|M_{n+1} - M_n| \le C$ a.s. where $C \in \mathbb{R}_+$ Then $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ (resp. ≥/≤).

Applications: (*X_n*) symmetric walk over \mathbb{Z} , $0 \le i \le N$, let $T = \tau_{\{0,N\}}$ absorption time by 0 or *N*

- ▶ Proba of absorption by *N*: $M_n = X_n \Rightarrow \mathbb{P}_i(X_T = N) = i/N$
- Mean absorption time:

Martingales: stopping time theorem

Theorem (Doob's stopping theorem/ optional stopping theorem)

Let (M_n) martingale (resp. sub-/super-) for (X_n) and T stopping time for (X_n) . If at least one of the next conditions is true:

- $T \leq N \ a.s. \ where \ N \in \mathbb{N}$
- ② $T < \infty$ and $\forall n \in \mathbb{N}$, $|M_n| \le C$ a.s. where $C \in \mathbb{R}_+$

③ $\mathbb{E}(T) < \infty$ and $\forall n \in \mathbb{N}$, $|M_{n+1} - M_n| \le C$ a.s. where $C \in \mathbb{R}_+$ Then $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ (resp. ≥/≤).

Applications: (*X_n*) symmetric walk over \mathbb{Z} , $0 \le i \le N$, let $T = \tau_{\{0,N\}}$ absorption time by 0 or *N*

- ▶ Proba of absorption by *N*: $M_n = X_n \Rightarrow \mathbb{P}_i(X_T = N) = i/N$
- Mean absorption time: $M_n = X_n^2 1 \Rightarrow \mathbb{E}_i(T) = i(N i)$

Tools for analysis

Irreducibility ? Periodicity ? Recurrence ? Invariant distribution ? Modeling with discrete time HMC

Martingales: Foster's theorem (I)

Theorem (one CS of positive recurrence - Foster 1953)

Let (X_n) HMC irred with values in E, if there exists $h : E \to \mathbb{R}_+$, F fini $\subseteq E$, $\varepsilon > 0$ such that:

- ► $\forall i \in F$, $\mathbb{E}_i(h(X_1)) = \sum_{j \in E} p_{ij}h(j) < \infty$, and
- $\forall i \notin F, \mathbb{E}_i(h(X_1) h(X_0)) = \sum_{j \in E} p_{ij}h(j) h(i) \leq -\varepsilon$

Then the chain is positive recurrent and $\forall i \in F$, $\mathbb{E}_i(T_F) \leq h(i)/\varepsilon$.

Example: biaised walk over \mathbb{N} with p < 1/2

$$0 \xrightarrow{l} 1 \xrightarrow{p} 2 \xrightarrow{p} 3 \xrightarrow{p} \cdots$$

Martingales: Foster's theorem (I)

Theorem (one CS of positive recurrence - Foster 1953)

Let (X_n) HMC irred with values in E, if there exists $h: E \to \mathbb{R}_+$, F fini $\subseteq E$, $\varepsilon > 0$ such that:

- ► $\forall i \in F$, $\mathbb{E}_i(h(X_1)) = \sum_{j \in E} p_{ij}h(j) < \infty$, and
- $\forall i \notin F, \mathbb{E}_i(h(X_1) h(X_0)) = \sum_{j \in E} p_{ij}h(j) h(i) \leq -\varepsilon$

Then the chain is positive recurrent and $\forall i \in F$, $\mathbb{E}_i(T_F) \leq h(i)/\varepsilon$.

Example: biaised walk over \mathbb{N} with p < 1/2

$$0 \xrightarrow{l} 1 \xrightarrow{p} 2 \xrightarrow{p} 3 \xrightarrow{p} \cdots \cdots$$

 \rightarrow positive recurrent: take *F* = {0} and *h*(*i*) = *i*

Martingales: Foster's theorem (II)

Theorem (one CS of non positive recurrence - Tweedie 1976)

Let (X_n) HMC irred with values in E, if there exists $h: E \to \mathbb{R}_+$, F finite $\subseteq E$, c > 0 such that:

- $\blacktriangleright \forall i \in E, \mathbb{E}_i |h(X_1) h(X_0)| = \sum_{j \in E} p_{ij} |h(j) h(i)| \le c$
- $\forall i \notin F, \mathbb{E}_i(h(X_1) h(X_0)) = \sum_{j \in E} p_{ij}h(j) h(i) \ge 0$
- ► $\exists i_0 \notin F, h(i_0) > \max_{i \in F} h(i)$

Then the chain is not positive recurrent and $\mathbb{E}_{i_0}(T_F) = +\infty$.

Example: biaised walk over \mathbb{N} with $p \ge 1/2$

$$0 \xrightarrow{l} 1 \xrightarrow{p} 2 \xrightarrow{p} 3 \xrightarrow{p} \cdots \cdots$$

Martingales: Foster's theorem (II)

Theorem (one CS of non positive recurrence - Tweedie 1976)

Let (X_n) HMC irred with values in E, if there exists $h: E \to \mathbb{R}_+$, F finite $\subseteq E$, c > 0 such that:

- $\blacktriangleright \forall i \in E, \mathbb{E}_i |h(X_1) h(X_0)| = \sum_{j \in E} p_{ij} |h(j) h(i)| \le c$
- $\forall i \notin F, \mathbb{E}_i(h(X_1) h(X_0)) = \sum_{j \in E} p_{ij}h(j) h(i) \ge 0$
- ► $\exists i_0 \notin F, h(i_0) > \max_{i \in F} h(i)$

Then the chain is not positive recurrent and $\mathbb{E}_{i_0}(T_F) = +\infty$.

Example: biaised walk over \mathbb{N} with $p \ge 1/2$

$$0 \xrightarrow{l} 1 \xrightarrow{p} 2 \xrightarrow{p} 3 \xrightarrow{p} \cdots$$

→ not positive recurrent: take $F = \{0\}$ and h(i) = i or $h(i) = \mathbb{1}_{\geq 1}(i)$

Invariant distribution: computation techniques

- Solve directly the linear system $\pi P = \pi$ with unknown $(\pi_i)_{i \in E}$ (combine/substitute, Gauss' pivot, Cramer's formulas ...).
- Introduce new linear equations using *flow* reasoning, to simplify the system solving.
- Pull out of the hat a good candidate, inject it in the linear system to check if it works, adjust its parameters if necessary.

Invariant distribution: flows

Proposition ("flow" vision of invariance)

Associate with distrib $\pi = (\pi_i)_{i \in E}$ the flow $f_{ij} \stackrel{\text{def}}{=} \pi_i p_{ij}$ from *i* to *j* for each edge *i j* in the transition graph. Then π inv distrib iff *f* satisfies Kirchoff's 1st law (preservation of the total flow at each state).

Proposition (Flow relations in the stationary regime)

Let
$$\pi$$
 invariant distrib and $S \subseteq E$, then: $\sum_{\substack{i \notin S \\ j \in S}} \pi_i p_{ij} = \sum_{\substack{j \in S \\ i \notin S}} \pi_j p_{ji}$

Example: reversible Markov chains

Modeling steps with discrete time HMC

- Define the space of states, list the states if possible
- Por each state, list events that may occur
- Check whether the dynamics is Markovian, homegeneous for time and/or space

Examples: some models based on discrete time M/M/1 queues